THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5220 Complex Analysis and its Applications 2016-2017 Suggested Solution to Assignment 8

1 (a) Let $f(z)=-6 z^{4}$ and $g(z)=z^{6}+2 z^{3}-z$. Note that for $|z|=1$,

$$
|f(z)|=\left|-6 z^{4}\right|=6|z|^{4}=6 \text { and }|g(z)| \leq|z|^{6}+2|z|^{3}+|z|=4<|f(z)|
$$

Therefore, by Rouche's theorem, the number of zeros of f and $f+g$ inside $|z|=1$ are the same. Since 0 is a zero of order 4 of $f(z)$ inside $|z|=1$, the number of zeros of $(f+g)(z)=$ $z^{6}-6 z^{4}+2 z^{3}-z$ inside $|z|=1$ is 4.
(b) Let $f(z)=z^{5}$ and $g(z)=-3 z^{3}-z+1$. Note that for $|z|=2$,

$$
|f(z)|=\left|z^{5}\right|=32 \text { and }|g(z)| \leq 3|z|^{3}+|z|+1=27<|f(z)|
$$

Therefore, by Rouche's theorem, the number of zeros of f and $f+g$ inside $|z|=2$ are the same. Since 0 is a zero of order 5 of $f(z)$ inside $|z|=2$, the number of zeros of $(f+g)(z)=$ $z^{5}-3 z^{3}-z+1$ inside $|z|=1$ is 5 .

2 First of all, for any $n \in \mathbb{N}$, we consider the function $f_{n}(z)$ defined by $f_{n}(z)=z-1-\frac{1}{n}$. Let $g(z)=e^{-z}$. Consider the positively oriented contour

$$
C=\left\{R e^{i \theta} \left\lvert\, \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right.\right\} \cup\{i R(-t) \mid t \in[-1,1]\}
$$

For any $R>4$, along the contour C, we have

$$
|f(z)|=\left|z-1-\frac{1}{n}\right| \geq 1+\frac{1}{n}>1 \text { and }|g(z)|=e^{-x} \leq e^{0}=1
$$

As a result, by Rouche's theorem, the number of zeros of f_{n} and $f_{n}+g$ inside C are the same. Since $1+\frac{1}{n}$ is the only zero of $f(z)$ and its multiplicity is 1 , the number of zeros of the function $\left(f_{n}+g\right)(z)=z-1-\frac{1}{n}+e^{-z}$ inside C is 1.
Now we consider the function $f(z)=z-1$. Note that for any $z \in \mathbb{C}$,

$$
\left|(f(z)+g(z))-\left(f_{n}(z)+g(z)\right)\right|=\frac{1}{n}
$$

Therefore, the functions $\left\{\left(f_{n}+g\right)(z)\right\}_{n \in \mathbb{N}}$ converge uniformly to the function $(f+g)(z)$. As a result, by Hurwitz's theorem, for any $R>4$, there exists $N \in \mathbb{N}$ such that $\left(f_{n}+g\right)(z)$ and $(f+g)(z)$ have the same number of zeros inside C. This implies that $(f+g)(z)=z-1+e^{-z}$ has exactly one root in the right half plane.
Remark: Since this question is quite tricky, you will not lose any mark even if your answer is incorrect.

3 Let $f(z)=\frac{a_{1} z+b_{1}}{c_{1} z+d_{1}}$ and $g(z)=\frac{a_{2} z+b_{2}}{c_{2} z+d_{2}}$ be two linear fractional transformations. By direct computation, one can show that $f(g(z))=\frac{a_{3} z+b_{3}}{c_{3} z+d_{3}}$, where

$$
\begin{aligned}
\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right) & =\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) \text { and } \\
\operatorname{det}\left(\begin{array}{ll}
a_{3} & b_{3} \\
c_{3} & d_{3}
\end{array}\right) & =\operatorname{det}\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) \operatorname{det}\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) \neq 0
\end{aligned}
$$

This shows that composition of two linear fractional transformations is a linear fractional transformation.

4 Note that the equation of straight line and circle can be written in the form

$$
A z \bar{z}+\bar{B} z+B \bar{z}+C=0
$$

where $A, C \in \mathbb{R}, B \in \mathbb{C}$ and $A C<|B|^{2}$. Under the transformation $\omega=\frac{1}{z}$, we can see that the equation becomes

$$
A \frac{1}{\omega} \frac{1}{\omega}+\bar{B} \frac{1}{\omega}+B \frac{1}{\bar{\omega}}+C=0
$$

which is equivalent to

$$
C \omega \bar{\omega}+B \omega+\bar{B} \bar{\omega}+A=0 .
$$

Therefore, the transformation $\omega=\frac{1}{z}$ maps straight line and circle to straight line and circle.
5 Let $F(z)=\left(z, f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)\right.$. Note that since $f(z)$ and $F(z)$ are linear fractional transformations, the mapping $F(f(z))=\left(f(z), f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)\right)$ is a linear fractional transformation. Furthermore, $F(f(z))=\frac{f(z)-f\left(z_{1}\right)}{f(z)-f\left(z_{3}\right)} \frac{f\left(z_{2}\right)-f\left(z_{3}\right)}{f\left(z_{2}\right)-f\left(z_{1}\right)}$ maps z_{1}, z_{2}, z_{3} to $0,1, \infty$. Since there exists a unique linear transformation which maps z_{1}, z_{2}, z_{3} to $0,1, \infty$, we have $\left(z, z_{1}, z_{2}, z_{3}\right)=$ $\left(f(z), f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right)\right)$.

