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1 (a) Let f(z) = −6z4 and g(z) = z6 + 2z3 − z. Note that for |z| = 1,

|f(z)| = | − 6z4| = 6|z|4 = 6 and |g(z)| ≤ |z|6 + 2|z|3 + |z| = 4 < |f(z)|

Therefore, by Rouche’s theorem, the number of zeros of f and f + g inside |z| = 1 are the

same. Since 0 is a zero of order 4 of f(z) inside |z| = 1, the number of zeros of (f + g)(z) =

z6 − 6z4 + 2z3 − z inside |z| = 1 is 4.

(b) Let f(z) = z5 and g(z) = −3z3 − z + 1. Note that for |z| = 2,

|f(z)| = |z5| = 32 and |g(z)| ≤ 3|z|3 + |z|+ 1 = 27 < |f(z)|

Therefore, by Rouche’s theorem, the number of zeros of f and f + g inside |z| = 2 are the

same. Since 0 is a zero of order 5 of f(z) inside |z| = 2, the number of zeros of (f + g)(z) =

z5 − 3z3 − z + 1 inside |z| = 1 is 5.

2 First of all, for any n ∈ N, we consider the function fn(z) defined by fn(z) = z − 1 − 1
n . Let

g(z) = e−z. Consider the positively oriented contour

C = {Reiθ | θ ∈ [−π
2
,
π

2
]} ∪ {iR(−t) | t ∈ [−1, 1]}

For any R > 4, along the contour C, we have

|f(z)| = |z − 1− 1

n
| ≥ 1 +

1

n
> 1 and |g(z)| = e−x ≤ e0 = 1

As a result, by Rouche’s theorem, the number of zeros of fn and fn + g inside C are the same.

Since 1 + 1
n is the only zero of f(z) and its multiplicity is 1, the number of zeros of the function

(fn + g)(z) = z − 1− 1
n + e−z inside C is 1.

Now we consider the function f(z) = z − 1. Note that for any z ∈ C,

|(f(z) + g(z))− (fn(z) + g(z))| = 1

n

Therefore, the functions {(fn+g)(z)}n∈N converge uniformly to the function (f+g)(z). As a result,

by Hurwitz’s theorem, for any R > 4, there exists N ∈ N such that (fn + g)(z) and (f + g)(z) have

the same number of zeros inside C. This implies that (f + g)(z) = z− 1 + e−z has exactly one root

in the right half plane.

Remark: Since this question is quite tricky, you will not lose any mark even if your

answer is incorrect.
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3 Let f(z) =
a1z + b1
c1z + d1

and g(z) =
a2z + b2
c2z + d2

be two linear fractional transformations. By direct

computation, one can show that f(g(z)) =
a3z + b3
c3z + d3

, where

(
a3 b3

c3 d3

)
=

(
a1 b1

c1 d1

)(
a2 b2

c2 d2

)
and

det

(
a3 b3

c3 d3

)
= det

(
a1 b1

c1 d1

)
det

(
a2 b2

c2 d2

)
6= 0.

This shows that composition of two linear fractional transformations is a linear fractional transfor-

mation.

4 Note that the equation of straight line and circle can be written in the form

Azz +Bz +Bz + C = 0,

where A,C ∈ R, B ∈ C and AC < |B|2. Under the transformation ω =
1

z
, we can see that the

equation becomes

A
1

ω

1

ω
+B

1

ω
+B

1

ω
+ C = 0,

which is equivalent to

Cωω +Bω +Bω +A = 0.

Therefore, the transformation ω =
1

z
maps straight line and circle to straight line and circle.

5 Let F (z) = (z, f(z1), f(z2), f(z3). Note that since f(z) and F (z) are linear fractional trans-

formations, the mapping F (f(z)) = (f(z), f(z1), f(z2), f(z3)) is a linear fractional transforma-

tion. Furthermore, F (f(z)) =
f(z)− f(z1)

f(z)− f(z3)

f(z2)− f(z3)

f(z2)− f(z1)
maps z1, z2, z3 to 0, 1,∞. Since there

exists a unique linear transformation which maps z1, z2, z3 to 0, 1,∞, we have (z, z1, z2, z3) =

(f(z), f(z1), f(z2), f(z3)).
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